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Abstract

It is shown that a large CIMS of adaptive fecclfcmward  coxltrc)llcrs  having a sinusoicla,l  regressor
(i.e., a regressor comprised exclusively of sil,usoiclal  sigl~als), can IJc writtcl]  as the parallel
cxmtmc.tion  of a purwl y lincat time-  invarial it (I,TI)  subsystcm a,lld a lincmr ti]nc-vmyi]  ig
(LTV) subsystem. Unclcr  certain statccl  collditicnls  tllc IJTV suhsystcm variishcs  MIC1 the
system is purely L’I’1, IIi this case, the adaptive co]ltrol ana,lysis  and clcsign  can bc. performed
cmnplctely  usirlg I,T’I  mcthc)ds. I]i tlie case where the I,g’V sutmystcln  dcm not c.omplctcly
va~lish, am explicit upper bound is cstablishcci  cm the induccc]  2-~lor]l]  of the lJIW block
which allows systclilatic  analysis using rc)bust colltrol mcthocls. The upper bound  c.all bc
]mximally  tightened Ly solving a convex o])tilniz,a.ticnl  prc)blcm illvc)lvi~lg  a rclateci  lillcar
II”]i3hiX  iI]CCIUditJf  (I,MI).  l’his cwc~”’a.11 approach rc])rcsc!l]ts  a Strc)llg  c]eparture  froI1] usilg the
sta.~lclard 1 ~yapuncw  mcl H yperstabi]ity  mctllc)ds for ada~)tivc  c.c)lltrcd  a!]alysis,  WJC1  ~moviclcs
a more c,cmplcte  robustness analysis to ensure that this class of aclaptivc  systems ca.~1  bc
confidently implemented ill practice,



1 INTRODUCTION

A hi.rge number of adaptive systems used ill practice (c.g,,  fc]r adalJtivc sigllal proccss-
iug, noise canceling) acoustics, vibration suppression, etc.),  have regressors which contain
sinusoidal excitations. In certain c.asm ,  SUC.}1 syskns have bee]]  foullcl to a,dlnit  ~xa,ct
finite- dime~]siona.l linear  time-invariant (I;l’1) rcprcxenta.tiolls  [7] [1 O] [1 I] [5] [18]. Rcmmtly,
a. ~icccssary  and sufficient condition, dcnotec]  as the XO conditicm  [I] [2], has been found
which characterizes precisely when such LT1 representations exist. Such cases are impor-
ta,~lt  because in contrast to nonlillcar and/or tixne-varying  representations, the stability,
convergence and robustness properties of LT1 systems cali be completely characterized
usi~lg standard rncthocls.

Unfortunately, it is not always possible tc) satisfy the XO condition exactly. For  example,
it has been showli  in Dayard [1] that a re,grcsscm  fcmncd by filtering sinusc)icls  thrcmgh a q’ap
Delay l,ixlc (1’DL)  will only satisfy the XO collclitioll  exactly in the limit as the number of
taps illcrcases to infinity. As amothcr  cxam})lc, irl~~)le.l~~cl~ta,tiol~s  based on ~)airccl sillc/cosi~~c
regressors will satisfy the XO conclitioll  exactly OIi]y  if suc.ccssive  pairs of CIUIiC!lltS  of the
rcgressc)r  arc pcrfe,ctly  ma,tchcd with rcspcc.t  to gain allcl arc exact 1 y 90 dc:grccs  out of p}lase.
Clearly, ixl practice it is difficult to satisfy the XO condition exactly, Hence, it is clcsirccl to
establish representations and robustness a.llalysis  for the general CMC.

In the present paper, it is shown that a large class of ,adaptive  systems with sinusoidal
regressors  call bc written as the parajlcl ccmncction  of a purely ];~’I block S,IIC1 all 1,7’V
Mock. AI] explicit upper bound is given o~l the illcluc.ccl  2-Ilorm of the L’I’V blc)ck which
allows systematic analysis using robust control rncthocls. ‘1’hc upper bcmnd car] bc maxi-
IIially tightmicd by solving a related convex optilnization  prc)blcxn  involviug a li~lear matrix
inequality (LM 1), arid solvecl  using available software packa,gcs.  As cle,sirecl  (fcm co~lsistcnlc.y
with ca.rlim results), the ncmn-bound  vanishes when tllc XO collclition  is satisfied lcadirig
to a purely I.TI system, An example is givcli  showing a, c.omplcte  rotmstncss  aria.lysis c)f
an adaptive systcm with a. single-tone sine/cosine regressor where  there are errors  in the
implcrncntation,  All results in this paper arc based on the ana~ ysis in a recent  report [1].

2 BACKGROUND

2.1 Adaptive Systems with Harmonic Regressors

‘1’hc configuration to be studied is shown in Figure 2,1, AII estimate ~ of some signal y is
to be. constructed as a linear c.ombilla,tion  of tllc clerncl)ts of a regressor vector x(t) c RN,
i,c,,

l!ktimatecl  Signal
Q = w(i)%(t) (2.1)
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where w(t) E !tN is a parameter vcctm-  which is tunccl in rml-tirnc  using the adapta.tioll
algorithm,

Adaptation A lgoriihm
‘w == pr(p)[i(t)c(t)] (2.2)

Here, the notation 17(p)[]  is used to dcllotc  tllc multivariablc  LTI transfer function I’(s) ~ 1
where I’(s) is any LTI transfer function in the I,apla.ce  s operatc>r  (the differcmtiaj  operator
p will replace the I,aplace operator s in all tirnc-domain filtering expressions); the term
c(t) E RI is an error signal; p > 0 is au adaptation .@n; and the signal ii is obtained by
filtering the regressor z through any stable filter $’(p), i.e.,

Regressor Filtering
i = F(p)[z] (2.3)

The notation f’(p) [.] denotes the multivariable LT1 transfer function 3’(s) “ J with S1S0
filter I’(s), acting on the indicated vector tilne domain signal.

For the. purposes of this paper, it will bc assumed that the regressor z can bc written as
a lillcar  combination of m distinct sinusoidal components {ti; }~~l,  O < w] < uq < . . . < w,,,,

wl~ere  tl~c.  frequel~c.ies  have been ordered by size from slnallest  to largest. F,quivalentl y, it
is assumed that there exists a matrix X E R.Nx2m such that,

Harmonic Regre990r
z = xc(i) (2,4)

c(t)  = [sin(wlt), cos(wlt),  ..,, sin(w,,lt),  cos(wn,  t)]~’ & R2”L (2.5)

Equations (2, 1)-(2.5) taken together will bc referred  to as a harmonzc  adaptive  system.
Collectively, these equations define an important open-loop mapping from the error signal
c to the estimated output j. Because of its ilnportancc,  this mappixlg  will bc demoted by
the special character H, i.e.,

The special structure of lf is depicted in Figure 2.1.

Most generally ‘H is a linear  time-varying (LTV) operator. However, the main results
of this paper show that ?t can always be written as the parallel connection of an LT1
subsystcm and an LTV subsystem where  the ‘(size’) of the LTV subsystem is ch aracterizcd
in terms of a norm bcmnd. This provides az] important alternative representation of the
adaptive system, particularly in cases (often occuring in practice) where the norm bound
on the LTV perturb atiol”l is small.

REMARK 2.1 The definition of I’(s) is left intentionally gclieral  to incluclc  analysis of the
gradient algorithm (i.e., with the choice I’(s) = 1/s), the gradient algorithm with lcakag,e
(i.e., I’(s) = l/(s+o);  o ~ O), proportional-plus-ilitegral  adaptation (i.e., I’(s) = kP-t  ki/s),
or arbitrary linear adaptation algorithms of the designer’s choosing, Adaptation laws which
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Figure 2.1: LTV operator j == ?f[c] for adaptive system with harmonic. regressor x, adap-
tation law I’(s), and regressor filter  I’(s).

are nonlinear or normalized (e.g., divided by the norm of the regressor), are IIot considered
here since they do not have an equivalent LTI representation I’(s).

REMARK 2.2 The use of the regressor filter F(s) is (2.3) allows the unified
of many important adaptation algorithms including the well-known Filtered-X
from the signal processing literature [16] [11] [4] [1 7], and the Augmented Error
of Monopoli [9]. Since x is comprised purely of sinusoidal  components and F
stable, all subsequent anajysis  will assume that the filter output  j has reached a steady-state

●

treatment
algorithm
algorithtn
in (2.3) is

condition, ■

3 LT1 REPRESENTATIONS

The following result taken from [I] [2] will be needed, which gives necessary and sufficient
cxmditions  for the operator H to be LTI,

TIIEOREM 3.1 (LTI  Representation ‘1’hcorem)  Let the regressor z(t) in the adap-
tive system (21) -(2. S) be given by the general multitone ]LaI’??LO?L~C expression (2.4)(2.5)

where the frequencies {til}~~l  ar& distinct, nomzero,  CLTLd  ]~’(j~a)]  > 0 for all i.

Then,

(i) The mapping W from e to Q is exactly representable as the linear time-invariant
operator,

H: j = 31 (p)e (3.:1)
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.
if and only if the matrix X in (8.4) satisfies the following X- Orthogonahiy (XO) condition,

X- Orthogonality  (XO) Condition:
~1’x ,... 1)2 (3.2)

L
dlz.l~xz  o . . . 0

0 .’”.:‘.
@ & 1 E R2n’x  2n1 (3.3)

“. “. o
0 . . . 0 (in: “ I’2X2

where, di

2 ~ O,i z 1 , . . . . m arc scalars and 12X2 E R.zxz  is ihe matriz identity.

(ii) H(s) in (9.1) is given in closed-form as,

( “  ))+- ‘~j2) (1’(s  ‘- j~i)  - ~(s + j~i) )‘R(i) r(s – jfJi) + r(s + j~tHi(S) =  
‘--~ (3.5)

Fn(i) ~ Re(l’(j~i)); F](i) S lnl(I’(j~~)) (3.6)

DEFINITION 3,1 The matrix A?’X == D2 having the special pairwisc  diagonal structure
(S’. 9) in Theorem S’.1 ag defined as the confluence matrix associated with a particular
harmonic adaptive system (,2. 1)-(2.5), B

Without loss of gc~ierality,  the confluence matrix will be assumed to be ~icmsingular,
i.c,, D2 > 0, since any zero diagonal pair d i

2 “ 12X2, di

2 =. O in D2 > 0 corresponds to a

distinct frequency ~i which can be removed from the dcfhition  of c(t) in (2.5), reducing
—

the value of m accordingly,

DEFINITION 3.2 A minimal realization of an LTI harmonic adoptive aydem  (2,1)-
(2.5) is defined by the regressor choice *1 == Xlc(t) where Xl G R2Tr&x2”L  is any square
matrix jactor  oj its confluence matriz D2 > 0, i. e.,

m

DEFINITION 3.3 Tonal canonical form is defined a.~ the unique minimal realization
oj an LTI harmonic adaptive sygtem  (2.1)-(2.5) specified by the rcgrusor  choice ccl == Xlc(t)
W}LCTC ~, ~ R2WL x 2nL is t]Le  unique positive diagonal square-root Xl = D > 0 of its confluence
matriz D2. u

The following Corollary to Theorem 3.1 will be useful for a later example,
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COROLI.AIIY 3 .1  (Grad ien t  A lgor i thm with I.eakage)  Assume  that  t}LC adaptive

system with harmonic regressor  (2, 1)-(2. 5) is specified as the gradient adaiptivc  algorithm
with leakage, a. e.,

ti) = -aw + Z(t)c(t) (3.7)

jor some value of the leakage parameter u >0 (cf.,  Ioannou and Kolcoiovic [8]). Then, if
the XO condition of Theorem S.1 is satisfied,  the LTI czvression  lS..J) for ‘H is given by,

“. . \ ,.

S+(7~(s) = ~ ~ diz -- --2-...2..“ ~i-+ ~*s+- (U; +U )
;=1

(3.8)

PROOF: Result (3.8) follows by substituting, I’(s) = -&; u ~ O, and F(s) = 1 in
Theorem 3.1, and rearranging..-

■

4 THE LTI/LTV DECOMPOSITION

The main result is given next, showixig  that ill the general case where the XO ccmditicm
is nc)t satisfied, the mapping ?-l can always bc clccomposccl  into a parattcl  connection of an
LTI subsystem and an LTV perturbation,

THEOREM 4.1 (LTI/LTV  Decomposition) Consider -the adaptive 9yste7n (2.1)-(2.9)
with harmonic regressor (l!.  J)(t, 5). Then,

(i) In general the mapping E from e to Q can be ~zpmssed as the parallel  connection of a7L

LTI block ~I(s), and an LTV pertu?’batio?L  block A,

w: j =- 7@)c + ii[c] (4.1)

where,

A[e] Q- pc(t)~AI’(p)  [Fc(t)c] (4.3)

A ~ X7’X – D2 (4.4)

F ~ blockdiag{~l}  E R2’’LX2’” (4J)
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[ 1~, A “(i) ~1(~) ~ ~2x2.
t

‘~~(i) ~R(i) ‘
jori==l,,..,  m (4.6)

f“(i) ~ Re(F(j~i));  ~](2) ~ Im(F(~~i)) (4.7)

and where Hi(s)  is ag defined in ($’.5) of Theorem S.1, and D2 is chosen (?~on-uniquely) as
any matriz oj the 2 x 2 block-diagonal jorm  (3. S).

(ii) lj the adaptation law I’(s) is stable with infinity norm 111’(s)l  [m, then the gain oj the
LTV perturbation can be bounded from above  as,

where 1] “ 112i denotes the induced L2-norm oj the indicated operator.

PROOF:

Proof of (i): Substituting (2.4) and the relation it == ~(p)[~c(t)]  = X.Fe(t) into (2.1)-(2.3)
gives,

[ 1i) = p@)q’r(l))  i(qe (4.9)

~ ~Jc(i)~x”x. r(p)  [fc(i)c] (4.10)

Decompose A’7’A’  into two distinct parts using the identity,

#’x = L)2 + (A’7’A’  – D2) == D2 + A (4.11)

Substituting identity (4.1 1) into (4,10), and expanding gives two distinct subsystems,

(4.12)

By the results of Theorem 3.1 the LTI part ~l[s) is uniquely associated with the operator
umta.ining  the D 2 term, and the LTV part A is uniquely assoc.iatcd with the operator
containing the A term in (4.12).

Proof of (ii): This result follows by standard signal norm bounding methods, and only a.
brief outline is given. Let,

where,
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(4.16)

But it can be shown that,
mtm(~~~)~ ~ ml . 6(A) (4.17)

Combining (4.16)(4,17) and (4.18) gives,

Hence,

(4.20)

which is the desired result, ■

The LTI/LTV  dec.ompositioxl  of ‘H can be understood by the sequence of block diagram
rearrangements shown in Figure 4.1. Specifically, Figure 4.1 Part a, shows the initia,l
adaptive system with harmonic regressor; Part b. shows the matrix X pushed through
scweral  scalar matrix blocks of the diagram; Part c, uses the identity A’q’A’  = 1)2 + (XT’X  –
D2) to split the diagram into two subsystems; and Part d, recognizes the upper subsystem
as LTI and the lower subsystem as LTV (from Theorem 3,1) with the indicated norm
bound,

REMARK 4.1 The LTI/LTV  decomposition in Theorem 4.1 is important for adaptive
systems which do not exactly satisfy the XO colldition, 111 this case, the adaptive system
can be analyzed using modern robust control methods (i.e., small gain theorc:m)  making
use of the analytic expression (4.2) for the LT1 block II(s) and the norm bound (4,8) on the
time-varying perturbation block A [15] [20], The illduced L2-norm has been bounded here
since it is consistent with the use of I]M theory for robustness analysis, However, oth(;r
induced norms (e. g., l. P-norm,  p = 1 or 3 < p < co) can be similarly boundecl and may be
of interest for other types of analysis [19], B

REMARK 4.2 The need for 111’(s)  I Im to exist in Theorem 4,1 (part ii) requires that the
adaptive law uses some type of ‘{leakage” (cf., Ioaunou ancl Kokotovic [8]). This condition
is somewhat conservative in light of the fact that many adaptive laws without leakage
arc known to be stable in closed-loop from separate Lyapunov stability arguments [12],
Hence, it is conjectured that a less conservative norm-bound is possible which does not
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require leakage. The search for such a bouncl  (if it exists) is left as an open issue, However
Theorem 4.1 will be applicable to most practical implementations since leakage is often
added to ensure robustness. ■

5 OPTIMIZED NORM BOUNDS

The decomposition as stated in Theorem 4.1 is only unique for a specified choice of D2,
He]lce,  D2 plays the role of a “multiplier” which should be optimized to capture ‘fmost”
of the LTI character of the H operator ili the I,TI/LTV dcco~nposition. The optimization
problem will be addressed in this section,

The approach is to minimize the norm-bound (4.8) of the LTV operator over all possible
D 2 of the appropriate pairwise diagonal form (3.3). Since the xnatrix  D2 only appears in
the ~(A) term, this is equivalent to minimizing 6( A’2’A’ - D2), The problem is stated below
and shown to lead to a convex linear matrix inequality (LMI)  optimization prc)blcm.

LEMMA 5.1 (LTV Norm-Bound Optimization)  Consider the jollowing optimization
problem,

In;Il b (#’~ – ~) (5.1)

wbject to,
[d1W2x2 o !.. o 1

I’oe0 .””.;“.
D2D242 I E R2’’LX2’”

‘! “. o
0 ,., 0  (i,: .12X2

(5.2?)

w}~ere,  di

2 ~ O, i z 1 , . . . . m are arbitrary scalars,

Then the solution is given by solving the folloujing  equivalent convex, optimization prob-
lem,

Jubject  to,

[

t. I 1x~x-D >0~1’~-.v t. I – (5.4)

t > o (5.5)

1)>0 (5.6)

where D is constrained to have the pairwisc  diagonal structure (5.2)

PROOF: Consider the related optimization prc]blem,

Inp t
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subject to,

(5.8)

t > o (5.9)

Given t > 0, inequality (5.8) is known to bc equivalent to S ~ O where  S is the Schur
mmplernent t – (XT% – D) T(t-l . I)(A?TA’ – D) (cf., [3]), But inequality S ~ O is equivalent
to the inequality t2 z (#’A’ – D) T’(A’T’A’  -- D), which is mini~nized  by t == b(XT’X – D), The
result of the lemma follows by further optimizing this solution over D with the colistraint
DZO.

The optimization problem (5.3)-(5,6) is in a standard form of a linear objective functicm
with LMI constraints. As such, it can be solved using many available software packages
for LMI problems, such as the LMI Control Toolbox [6] which implements the Projective
Algorithm of Nestcrov and Ncmirovskii [13][1 4].

For single-tone problems, the optimal D2 =- & .1 can be found analytically.

LEMMA 5.2 (Single-Tone Case) Congider  the optimizatio?~  problcm,

u]here  d 2 ~ O is an arbitrary scalar.

Then the solution d2 ig given by the average of the diagonals of X1’X, i.e.,

d  2  ~ ;(n-~ll  -t m22)

(5.10)

(5.11)

uiL ere,

~7’~ ~ M (5.12)

‘s[:~ wR2x2 (5.13)

PROOF: The singular values al, 02 of the 2 x 2 symmetric matrix A = A’?’X  – d2 , 1 can
be written in terms of its eigenvalues  as,

Oi(A) = lAi(A)l ~ (~i(X7’A’) -- d21, i ~ 1 , 2 (5.14.)

where  Ai(A) denotes an eigcnvalue of A and ~i(A’T’A’) denotes an eigenvalue  of ~T’~’.
Here, the cigenvalues  Ai and ~i arc related by the shift in the complex plane i,c., Ai I=
~i—d2, i = 1, 2. Hence  as d2 is increased, the ~i are clctcrlni~lcd  by shifting the (Ilonega,tive
real) cigenvajues ~i to tllc left along the real axis a distance of d2, The quantity 5(A) :=
rnaz(]~l  [, 1~21) is clearly minimized at the point where J1 = – A2, or equivalent] y where,

d 2 = (al + Q2)/2 := ‘Trace(A’7’A’)/2 (5.15)

11
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which is the desired result (5.11).

6 EXAMPLE

Consider the gradient adaptive algorithm with leakage,  i.e.,

ti) == –(y~) + Z(t)e(t) (6.1)

for some value of the leakage parameter o ~ 0, This corresponds to the choice I’(s) =
1/(s + 0), F(s) = 1 in the adaptive system (2.1)-(2.5).

The ideal sine/cosine regressor is defined by,

[ 1sinwlt
~=1

COs Cqt

Since x = Xl c(t) with A’l = diag[l, I] it follows that the XO conditioll  A’~’A’l = D2 is
satisfied exactlv with confiucncc  matrix D 2 == diao [l . ]1. ~Jsine’  t}le reslllts from ~!orol]a,rv
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Hence, by the LTI/LTV decomposition the adaptive system is rcprmemtablc  by a parallel

mm~ectioli  of the LTI Mock ~~(s) given in (6,2) and arl LTV perturbation blc)ck A with
induced 2-riorm  bound,

IIAII,, < /LrnD-(A)/lr(s) [[m(F(jw,)/

It is seen that as E –~ O and # ~ O, the norm bound A goes to zero, which ensures
a pure LTI representation in the limiting case of a. perfect regressor implementation. For
finite c and O the, above LTI/LTV decomposition is amenable tc) anajysis  using standard
robust control methods.

7 CONCLUSIONS

This paper provides an alternative representation of adaptive feedforward systems with
sinusoicla.1  regressors. Specifically, the LTI/LTV  ]lccompositioll  Thcorwm  is proved which
decomposes the adaptive system into a parallel co]incction  of am LT1 subsystem and an LTV
subsystem. An explicit norm-bound is esta.blishccl  on the LTV subsystem, to cllable the use
of robust control methods applicable to LT1 systems with norm-bounded perturbations.

The LTI/LTV decomposition is u~iiquc up to the choice of a certain multiplier lnatrix D2.
This multiplier is ideally c.hosell  to minilnize the llorxn-boulld on the L’I’V operator, It was
shown that the optimal multiplier could be. found by solving a related convex programming
problem involving a linear matrix inequality, The LM1 problcrn is readily solved using
available software. For the single-tone case, an a.rlalyt,ic  solution was provided.

A simple exa.mplc  was given to dcrnonstratc the rna.in ideas, using a, regressor con-
structed from a non-idcxd  sine/cosine basis. The system was optimally decomposed into
LTI and LTV subsystems, indicating that the LTV perturbation is on the order of phase
arlcl amplitude perturbations in the regressor. As desired, a perfect LT1 rcpresmltation is
recovered in the limit as the phase and gain clistortions  became small,

The LT1/LTV  representation is significantly different from other representations of
adaptive systems which typically require the usc of Lyapuncw  and Hyperstability  meth-
ods for adaptive control analysis [12]. In contrast, the LTI/LTV  representation can be
analyzed and designed using modern robust control tools applicable to L’T1 systems with
nor~n-bounded perturbations, It is hoped that this will open up a new undcrsta,riding  of
how such adaptive systems work and speed up their reduction to practice.
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